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SUMMARY

Background: The combination of resting-state functional MRI (R-fMRI) technique and

graph theoretical approaches has emerged as a promising tool for characterizing the topolo-

gical organization of brain networks, that is, functional connectomics. In particular, the

construction and analysis of high-resolution brain connectomics at a voxel scale are impor-

tant because they do not require prior regional parcellations and provide finer spatial infor-

mation about brain connectivity. However, the test–retest reliability of voxel-based

functional connectomics remains largely unclear. Aims: This study tended to investigate

both short-term (� 20 min apart) and long-term (6 weeks apart) test–retest (TRT) reliability

of graph metrics of voxel-based brain networks. Methods: Based on graph theoretical

approaches, we analyzed R-fMRI data from 53 young healthy adults who completed two

scanning sessions (session 1 included two scans 20 min apart; session 2 included one scan

that was performed after an interval of �6 weeks). Results: The high-resolution networks

exhibited prominent small-world and modular properties and included functional hubs

mainly located at the default-mode, salience, and executive control systems. Further analy-

sis revealed that test–retest reliabilities of network metrics were sensitive to the scanning

orders and intervals, with fair to excellent long-term reliability between Scan 1 and Scan 3

and lower reliability involving Scan 2. In the long-term case (Scan 1 and Scan 3), most

network metrics were generally test–retest reliable, with the highest reliability in global

metrics in the clustering coefficient and in the nodal metrics in nodal degree and efficiency.

Conclusion: We showed high test–retest reliability for graph properties in the high-resolu-

tion functional connectomics, which provides important guidance for choosing reliable

network metrics and analysis strategies in future studies.

Introduction

In the past several years, increasing attention has been focused on

studies of functional connectivity patterns of the human brain

networks, that is, the functional connectomics [1–3]. With the

assistance of noninvasive imaging techniques such as resting-state

functional MRI (R-fMRI) and graph theoretical approaches,

researchers have found many important topological characteristics

in the functional networks of the human brain, including small-

worldness, modularity, and highly connected hubs (for reviews,

see [4–6]). There is also evidence that these network characteris-

tics undergo remarkable changes during normal development

[7,8], aging [9,10], and neuropsychiatric disorders [11–13]. These

studies have provided crucial insights into the topological organi-

zation of the human brain in health and disease.

In the brain network construction, the definition of nodes is of

fundamental importance and can profoundly affect the graph-

based parameters (e.g., clustering coefficient, characteristic path

length, and small-worldness) of the brain networks [14–16] and

the associated test–retest (TRT) reliability [17]. Network nodes can

be defined by either regions of interest (ROIs) or imaging voxels

[18,19]. Currently, most brain network studies have been confined

to the ROI-defined nodes due to the limitation of the available

computational power. For the ROI-based network analysis, there

are various different anatomically and/or functionally defined par-

cellation schemes and the selection between them is still contro-

versial. In addition, the functional activity within a given ROI is

usually considered as homogeneous, ignoring the possible spatial

inhomogeneity within large ROIs [20]. In contrast, voxel-based

brain networks possess more naturally defined nodes (i.e., imaging

voxels) in a higher spatial resolution without prior parcellations,

which may unveil more detailed connectivity information espe-

cially for regions that contain multiple subdivisions [16]. Recently,

graph analyses of voxel-based brain networks have been per-
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formed in R-fMRI studies [16,21,22]; however, the TRT reliability

of these network metrics remains to be further investigated.

Reliable measures with both low intrasubject and high intersub-

ject variability are essential to infer convincing conclusions and to

serve as potential clinical biomarkers. Previous research has sug-

gested that the functional brain networks derived from R-fMRI

data can be modulated by various confounding factors including

emotional states [23], consciousness levels [24,25], scan condi-

tions [26], cognitive states before scanning [27], and diverse data

analysis/preprocessing strategies such as global signal regression

(GSR) and head motion [28,29]. These factors are likely to con-

tribute to the temporal changes in functional networks and

increase the intrasubject variability of the network metrics,

thereby affecting their TRT reliability. A few R-fMRI studies

[17,29–32] have investigated the TRT reliability of ROI-based net-

work metrics and have shown their dependences on several con-

founding factors, including the definition of nodes and edges and

strategies for nuisance regression (e.g., with/without GSR).

Recent studies in voxelwise R-fMRI networks have mainly

focused on the TRT reliability of nodal centrality metrics (e.g.,

degree and eigenvector) [33–35] and have revealed moderate to

good TRT reliability in most hub regions. A previous task fMRI

study [36] reported that several global metrics (e.g., clustering

coefficient and characteristic path length) of voxel-based brain

networks are highly reproducible, but restricts the TRT analysis to

healthy elderly adults during an executive task. Thus, the TRT

reliability of multiple graph metrics (e.g., small-worldness, modu-

larity, and nodal centrality analysis) in voxel-based whole-brain

functional networks during resting-state remains to be systemati-

cally elucidated, especially for healthy young adults.

Using an R-fMRI TRT dataset of 53 healthy young adults with a

narrow age range (19–30 years), in this study, we constructed indi-

vidual whole-brain functional networks at a voxel level with 25K

nodes and systematically investigated both short-term (approxi-

mately 20 min apart) and long-term (6 weeks apart) TRT reliability

of network metrics, including various global and nodal properties.

The voxel-based network construction and analysis were per-

formed based on a CPU-GPU hybrid platform [37]. Intraclass coeffi-

cient (ICC) was used to measure the TRT reliability of the network

metrics, as suggested by prior works [17,29,30]. Finally, we exam-

ined the impacts of different connectivity thresholds and prepro-

cessing strategies, such as global signal removal and head motion

correction, on the TRT reliability of voxel-based brain networks.

Materials and Methods

Participants

The R-fMRI TRT data are a subset of the Connectivity-based Brain

Imaging Research Database (C-BIRD) at the Beijing Normal Uni-

versity (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_

1.html). In brief, the dataset consists of R-fMRI scans

(~ 6.5 min) that were acquired from 57 healthy young adults

(male/female: 30/27; age: 19–30 years) who completed two MRI

scanning sessions within an interval of ~ 6 weeks (40.94

� 4.51 days). All participants are right-handed and have no his-

tory of neurological and psychiatric disorders. Data of four subjects

were excluded from the analysis because three of them had excess

head motion (translation > 2 mm or rotation >2°; ID: N0006,

N0016, and N0027) and one subject (ID: N0044) had missing slices

in R-fMRI data. All analyses were performed based on the data of

the remaining 53 healthy adults (male/female: 28/25; age:

19–30 years). Written informed consent was obtained from each

participant, and this study was approved by the Institutional

Review Board of the State Key Laboratory of Cognitive Neurosci-

ence and Learning at the Beijing Normal University.

Data Acquisition and Preprocessing

All MRI data were obtained using a Siemens Trio Tim 3.0T scanner

(Siemens, Erlangen, Germany) with a 12-channel phased-array

head coil in the Imaging Center for Brain Research, Beijing Nor-

mal University. All participants underwent two scanning sessions

as follows. The first session included two R-fMRI scans, T1, T2,

and diffusion MRI. The two R-fMRI scans (Scan 1 and Scan 2)

were at the beginning and the end of the session (~20 min apart),

respectively. The second session included R-fMRI (Scan 3), T1,

and diffusion MRI. Participants were instructed to rest and relax

with their eyes closed and not fall asleep, and none of the partici-

pants fell asleep during the MRI scans according to a simple ques-

tionnaire after the MRI scan. R-fMRI data were obtained using an

echo-planar imaging (EPI) sequence with the following parame-

ters: TR/TE = 2000 ms/30 ms, FA = 90°, FOV = 200 9 200 mm,

matrix = 64 9 64, slices = 33, thickness = 3.5 mm, voxel size = 3.1

9 3.1 9 3.5 mm3, gap = 0.7 mm, and 200 volumes. 3D high-reso-

lution brain structural images were acquired using a T1-weighted,

sagittal 3D magnetization-prepared rapid gradient echo (MP-

RAGE) sequences. The sequence parameters were TR/TE = 2530

ms/3.39 ms, FA = 7°, FOV = 256 mm9256 mm, matrix = 256 9

256, slices = 144, slice thickness = 1.33 mm, and voxel size = 1.3 9

191 mm3. Diffusion imaging data were not used in this study.

All R-fMRI images were preprocessed using DPARSF [38] and

SPM8 (www.fil.ion.ucl.ac.uk/spm/). The first five time points

were first discarded from each of three scans for magnetic field sta-

bilization and allowing participants to adapt to the scanning envi-

ronment. The subsequent preprocessing steps included slice time

correction and head motion correction. During the head motion

correction, three subjects (subject ID: N0006, N0016, and N0027)

were excluded from subsequent analysis due to large head motion

in at least one scan with a criterion of 2 mm or 2. Next, the cor-

rected functional images were normalized to the MNI space using

T1 image unified segmentation, resampled to 4 mm isotropic vox-

els, and further smoothed via a Gaussian kernel with a 4 mm full

width at half maximum. Then, linear detrending and a temporal

band-pass filtering (0.01–0.08 Hz) were performed. Finally, six

head motion parameters and three other confounding signals,

including white matter, cerebrospinal fluid, and global signals,

were removed from BOLD time series for all voxels.

Network Construction

The functional network construction was constrained within a

gray matter mask of 25,218 voxels, which was generated by thres-

holding a prior gray matter probability map (>0.2) provided by

SPM8. We computed Pearson’s correlations between all pairs of

nodes (i.e., brain voxels), resulting in three 25,218 9 25,218
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correlation matrices for each subject (one matrix for one R-fMRI

scan). All negative correlations were removed, considering their

ambiguous biological interpretation [31]. Then, we binarized these

individual correlation matrices at a range of connectivity density

thresholds and obtained a set of binary networks. The lower bound

of density was set at S1 = 0.1% to maintain estimable small-world

properties and high network connectedness, and the upper bound

of density was set at S 2 = 10.0% to ensure the sparsity nature of

the brain networks and simultaneously remove the weak correla-

tions as possible. Within the range of 0.1% to 10.0%, seven con-

nectivity densities (i.e., 0.1%, 0.4%, 0.7%, 1%, 4%, 7%, and

10%) were selected to construct the voxelwise functional net-

works and further to investigate the TRT reliability of network

metrics. This range of density ensured that most voxels were con-

nected to the largest component of the network, reducing the bias

from the isolated nodes on the computation of global metrics.

Network Analysis

Network Metrics

To describe the basic characteristics of the voxelwise brain networks

at each connectivity density, we first computed the mean func-

tional connectivity strength, the size of the largest component, and

the number of isolated voxels. The mean functional connectivity

strength of a network was evaluated by averaging the functional

connectivity (i.e., Pearson’s correlation) across all existing edges in

the network at a specific density. The size of the largest component

was estimated by counting the number of node voxels within the

largest connected cluster. The isolated voxels were referred to those

voxels without any connections in the network.

We further examined the topological attributes of the brain net-

works, which can be categorized into two levels: global and nodal

metrics (Table S1). The former included the network clustering

coefficient, Cp; the characteristic shortest path length, Lp; the nor-

malized clustering coefficient, c (i.e., Cp/Cprand); the normalized

characteristic path length, k (i.e., Lp/Lprand); the small-worldness,

r (i.e., c/k); and the modularity, Q. Notably, Cp and c quantify the

extent of local integrity of the brain networks, but Lp and k quan-

tify the extent of global integrity of the brain networks. Specifically,

Cprand and Lprand refer to the average of Cp and Lp obtained from

10 surrogate random networks, respectively, that possess the same

number of nodes, edges, and identical degree distribution with the

original brain networks. For modular detection, we utilized the

Louvain algorithm [39], which is fast and efficient for large net-

works. Notably, to reduce the potential effects of isolated voxels,

the characteristic shortest path length, Lp, was calculated as the

“harmonic mean” distance among all possible pairs of nodes. At

the nodal level, we calculated the following four metrics for a given

voxel, i: nodal degree, ki; nodal efficiency, ei; nodal betweenness,

bi; and participation coefficient, pi. For each nodal metric, a group-

level map was generated by averaging individual metrics across

subjects for each scan and then converted into z-scores. Functional

hubs were identified with a criterion of one standard deviation

above the average value across the brain (i.e., z-score > 1). The

computation of all the above network metrics was carried out on a

CPU-GPU hybrid platform proposed by Wang et al. [37]. More

details of the GPU implementation can be found [37].

Test–retest Reliability

To evaluate the TRT reliability of the graph metrics between any

two scans, we employed a common index of intraclass correlation

coefficient (ICC) [40,41]. Given we used the same scanner and

acquisition settings for all three R-fMRI scans, we preferred a one-

way analysis of variation (ANOVA) model with random subject

effects between every pair of scans as follows:

ICC ¼ BMS�WMS

BMSþ �
k� 1

�
WMS

; (1)

where BMS is the between-subjects mean square, WMS is the

within-subject mean square, and k is the number of repeated

observations per subject (here, k = 2). This form of ICC has been

used to measure the TRT reliability of graph metrics in previous R-

fMRI studies [17,31]. In this study, we calculated both short-term

and long-term TRT reliability for network metrics of interest at

each density: The short-term reliability was estimated based on

the data in Scan 1 and Scan 2, and two forms of the long-term reli-

ability, long-term I based on the data between Scan 1 and Scan 3,

and long-term II based on the data between Scan 2 and Scan 3.

According to the criteria adopted from Winer [42] and Sampat

et al. [43], TRT reliability was categorized as excellent

(ICC > 0.75), good (ICC 0.6–0.75), moderate or fair (ICC 0.4–0.6),

low (ICC 0.25–0.4), and poor (ICC < 0.25), respectively.

Statistical Analysis

We performed the following statistical analysis at each connectiv-

ity density. For each global metric, we first calculated Pearson’s

correlation coefficient across subjects to elucidate the consistency

of the intersubject variation between every pair of scans. Then, a

repeated-measures analysis of variation (ANOVA) was used to

examine differences in the network metric of interest among

scans, followed by post hoc paired t-tests on each possible combi-

nation of scans to find out which scan was responsible for the dif-

ference. For each nodal metric, the spatial similarity of the group-

level functional maps between different scans was assessed with

an across-voxel correlation analysis. Next, a repeated-measures

ANOVA and post hoc paired t-tests were performed in a voxelwise

manner to show the spatial maps of the interscan differences. All

statistical maps were corrected for multiple comparisons using a

Monte Carlo simulation [AlphaSim by Ledberg et al. [44]] with a

criterion of P < 0.05. Specifically, the resulting F-maps were cor-

rected within the gray matter mask (uncorrected P < 0.05 with a

cluster size > 16). Post hoc paired t-maps were corrected within

the masks showing significant main effects on scans for each nodal

metric (uncorrected P < 0.05 with the minimal cluster sizes of 11,

12, 6, and 8 for degree, efficiency, betweenness, and PC, respec-

tively).

Effects of Global Signals on TRT Reliability

Several prior R-fMRI studies have demonstrated the positive

impacts of regressing out signals of white matter and cerebrospinal

fluid on the TRT reliability of ROI-based networks [29,30].
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The effects and the necessity of the GSR, however, remain contro-

versial as the physiological basis of the global signals is still ambig-

uous [45,46]. The removal of global signals has complicated

effects on the TRT reliability of both ROI-defined [29,31] and vo-

xelwise [33] functional networks. To further investigate the

effects of global signals on the TRT reliability of multiple topologi-

cal metrics in the voxelwise networks, we also performed a net-

work analysis without GSR. Additionally, we calculated the

power spectrum and the amplitude of the low-frequency fluctua-

tion (ALFF) of individual global signals, followed by a TRT analysis

between scans.

Effects of Head Motion on TRT Reliability

Head motion has been regarded primarily as a nuisance in the

analysis of functional connectivity, and several methods have

recently been proposed to reduce the effects of subject motion

[28,47–49]. To evaluate the effects of transient head motion, we

used a scrubbing approach [47] to eliminate the volumes with

large instantaneous head motion [frame displacement (FD) >

0.5 mm] and their neighboring volumes (one back and two for-

ward). After the elimination, subjects for whom we retained more

than 90% of the original data in all three scans were included in

the subsequent analysis. Then, we reconstructed the functional

networks in the same way and recalculated the TRT reliability for

both global and nodal metrics as a validation of our results.

Results

TRT Reliability of Mean Functional Connectivity
Strength and Connected Network Size

The mean correlation coefficients of the functional connectivity

matrices without thresholding were 0.081 � 0.0065,

0.083 � 0.0061, and 0.080 � 0.0052 across subjects for Scan 1,

Scan 2, and Scan 3, respectively. Among the three scans, higher

cross-subject correlation and TRT reliability were found between

Scan 1 and Scan 3 (r = 0.59, P < 0.00001; ICC = 0.55), while Scan

2 showed lower correlation and TRT reliability with the other two

scans (r = 0.26, P = 0.055, ICC = 0.023 between Scan 1 and Scan

2; r = 0.14, P = 0.32, ICC = 0.03 between Scan 2 and Scan 3). For

each scan, we further measured the mean functional connectivity

strength, the largest component size, and the number of isolated

voxels in the whole-brain networks across seven different connec-

tion densities. As shown in Figure 1A, we observed that the distri-

butions of each metric across densities almost coincided across the

different scans. Notably, when the connectivity density value

exceeded 1%, most individual brain networks were fully con-

nected without isolated nodes and possessed the same size as the

largest components (Figure 1A). For each metric, further analysis

revealed a higher cross-subject correlation between Scan 1 and

Scan 3 (red lines) at each density (r > 0.37, P < 0.01) (Figure 1B)

and moderate to excellent TRT reliability (all ICCs > 0.4 at a den-

sity larger than 1%, Figure 1C) between the two scans (i.e., long

term I). At a density value of < 1% in which the brain networks

were not fully connected, it was not surprising that both the larg-

est component size and the number of isolated voxels showed low

or poor TRT reliability (ICC < 0.4) (Figure 1C), especially between

Scan 1 and Scan 2 (i.e., short term) and between Scan 2 and Scan

3 (i.e., long term II).

TRT Reliability of Global Network Metrics

Global Network Metrics

Across all seven density levels, individual brain networks showed

prominent small-world characteristics as characterized by r > 1,

except one subject in the first scan at the density of 0.1%

(r = 0.95). For different scans, four metrics including c, Lp, k, and
r exhibited similarly decreasing profiles across increasing densi-

ties, accompanied by decreased intersubject variation (Figure 2A).

The modularity index, Q, also decreased with increasing densities

in the three scans, but kept a relatively stable intersubject varia-

tion (Figure 2A). In contrast to other metrics, Cp increased shar-

ply from 0.1% to 0.4% density and fluctuated within a narrow

range at the higher density levels (Figure 2A).

Interscan Differences in Global Network Metrics

A one-way repeated-measures ANOVA showed significant differ-

ences in Cp among the three scans across all seven densities

(F(2,52) > 5.25, P < 0.007, Figure 2A). For other global metrics (c,
Lp, k, r, and Q), significant differences were also observed on

higher density levels above 1.0% (P < 0.01, Figure 2A). Post hoc

paired t-tests revealed that these differences mainly resulted from

the dissimilarity of Scan 2 with the other two scans (Table S2).

Further correlation analysis also exhibited relatively higher con-

sistencies across subjects between Scan 1 and Scan 3 (red lines,

r > 0.43, P < 0.005) than between Scan 1 and Scan 2 (blue lines)

and between Scan 2 and Scan 3 (green lines) for all global metrics

examined (Figure 2B).

TRT Reliability in Global Network Metrics

Figure 3 shows the TRT reliability of six global metrics between

every pair of scans over the density range examined. Generally,

most global metrics showed moderate to good TRT reliability

between Scan 1 and Scan 3 (long-term I). For example, Cp was

found to be most reliable as the ICC values ranged from 0.52 to

0.69 across different densities, whereas Q exhibited moderate ICC

values ranging from 0.29 to 0.45. In contrast with the long-term I

(Scan 1 and Scan 3), both the short-term (Scan 1 and Scan 2) and

long-term II (Scan 2 and Scan 3) scans exhibited poor to fair ICC

values for most metrics.

Functional Hubs and Their TRT Reliability

Functional Hubs

Four nodal metrics (i.e., nodal degree, nodal efficiency, nodal

betweenness, and participation coefficient) were calculated to

estimate the topological roles of nodes in the whole-brain net-

works in a voxelwise manner at different densities. For each nodal

metric, the spatial patterns between scans were highly similar,

regardless of the density considered (Figures S1 and S2), as indi-

cated by significantly positive correlations across different density
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levels (r > 0.7, P < 0.00001, Figure 4A). We displayed the group-

level voxelwise nodal centrality maps at a density of 4.0%, which

exhibited the highest interscan consistency for all nodal metrics

between Scan 1 and Scan 3 (r > 0.79, P < 0.00001). As shown in

Figure 4B, the spatial distribution of functional hubs exhibited

similar patterns for the three nodal centrality metrics (nodal

degree, efficiency, and betweenness). The functional hubs identi-

fied by these three metrics (called global hubs) were mainly located

at regions in the default-mode network (DMN) [e.g., the bilateral

precuneus/posterior cingulate cortex (PCu/PCC), the medial pre-

frontal cortex (MPFC), and the inferior parietal lobule (IPL)], the

salience network [e.g., the anterior insula and dorsal anterior cin-

gulate cortex (dACC)], and the executive control network (ECN)

[e.g., the dorsolateral prefrontal cortex (dlPFC) and superior parie-

tal cortex]. Similar hub regions were also identified by these three

nodal metrics at other densities (Figures S1 and S2). Notably,

brain regions with high participation coefficients (called connector

hubs) were mainly located in several subcortical regions (e.g., cau-

date nucleus, putamen, and thalamus), the medial temporal lobe

(e.g., hippocampus and parahippocampal gyrus), and the precen-

tral gyrus. No conjunction of hub regions was detected for all four

nodal metrics (Figure 4B). Regions with high overlap level across

nodal metrics were mostly (>99%) attributable to their higher

degree, efficiency, and betweenness values (Figure 4B). Interest-

ingly, at the lowest density (e.g., 0.1%), the spatial patterns of

connector hubs identified by the participation coefficient were

approximately similar to those derived from the nodal degree and

efficiency metrics (Figures S1 and S3), with an overlap in several

DMN regions (e.g., PCu/PCC and IPL). As the density increased,

the connector hubs shifted from the DMN regions to several

(A)

(B)

(C)

Figure 1 Functional connectivity networks at different connectivity densities. For each scan and each individual, three essential properties of the voxel-

based functional networks were calculated at different connectivity densities, including the mean functional connectivity strength (FCS), the largest

component size (LCS), and the number of isolated nodes. (A) Both the mean FCS and number of isolated voxels decreased with an increase in network

density, while the LCS increased when the network density rose. (B) The Pearson correlation coefficients between any pairs of the scans across subjects

on each metric. (C) Three terms of TRT reliability for each metric. For these metrics, higher correlation and reliability were found between Scan 1 and Scan

3 (long-term I). ICC, intraclass correlation coefficient.
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subcortical regions and the medial temporal lobe (Figure S3), sug-

gesting that the identification of connector hubs is sensitive to the

selection of network thresholds.

Interscan Differences in Brain Hubs

Although the spatial patterns of functional hubs were similar in

all three scans, some differences in the nodal centrality maps can

be found among the scans (Figure 4B). For example, a visual

examination indicated that both the visual cortex and thalamus in

Scan 2 exhibited higher values in the degree and efficiency met-

rics than in Scan 1 or Scan 3. These interscan differences were fur-

ther confirmed by the repeated-measures ANOVA among the

three scans for each nodal metric (Figure S4A). Again, post hoc

paired t-tests illustrated that these differences mainly origi-

nated from Scan 2 (Figure S4B): There were very few significant

(A)

(B)

Figure 2 Global metrics and intersubject correlation among different scans at different connectivity densities. (A) Mean values across subjects decreased

with an increase in network density for all global metrics except Cp. (B) Correlations of global metrics across subjects between each pair of the three

scans. In (A), “*”and “**”denote that at the specific density, a significant difference was found among the three scans at the level of P = 0.01 and the level

of P = 0.001, respectively, from a repeated-measures ANOVA. Cp, clustering coefficient; c, gamma; r, sigma; Lp, characteristic path length; k, lambda; Q,

modularity.
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differences in the nodal centrality values between Scan 1 and Scan

3, but many significant differences either between Scan 1 and

Scan 2 or between Scan 2 and Scan 3.

TRT Reliability of Functional Hubs

For each nodal metric, the TRT reliability of each voxel was quan-

tified by an ICC value under different interscan intervals. The

mean TRT reliability values of nodal degree and efficiency metrics

were higher than those of nodal betweenness and participation

coefficients in the whole-brain networks, regardless of connectiv-

ity densities (Figure 5A). Further, the mean TRT reliability values

between Scan 1 and Scan 3 (i.e., the long-term I, red bars) were

the highest, regardless of different connectivity densities and

nodal metrics (Figure 5A). Regionally, in the long-term I, many

brain regions, including the major components of the DMN, the

salience, and ECN networks, showed fair to good TRT reliability

(ICC > 0.4) for the degree and efficiency metrics (Figure 5B). In

the short-term and long-term II, only a few regions showed high

TRT reliability for the two metrics (Figure 5B). In contrast to the

nodal degree and efficiency metrics, nodal betweenness and the

participation coefficient were found to be less reliable regardless of

connectivity densities and scanning intervals (Figure 5B), with a

large proportion (>88%) of regions exhibiting poor to low reliabil-

ity (ICC < 0.4).

Influence of Global Signals on TRT Reliability

To investigate the influence of global signals on the TRT reliability

of network metrics, we also constructed the voxel-based whole-

brain functional networks without GSR in the preprocessing stage.

The cross-subject correlation analysis for each global metric

revealed a higher consistency of intersubject variation between

Scan 1 and Scan 3 across all density levels (r > 0.28, P < 0.05).

The TRT reliability analysis revealed that most global metrics

exhibited moderate to good reliability (ICC > 0.4) between Scan 1

and Scan 3 (i.e., the long-term I), and poor or low reliability in

either the short-term or long-term II, without GSR (Figure 6A).

Compared with the results in Figure 3, the reliability of short-

term and long-term II was decreased without GSR.

Figure 7 illustrates the nodal centrality maps (Scan 1) and their

long-term I TRT reliability without GSR at a density of 4%. The

spatial patterns of both global hubs and connector hubs (Figure 7)

were approximately consistent with those identified with GSR

(Figure 4B): Most regions in the DMN and ECN networks exhib-

ited higher degree, efficiency, and betweenness values, whereas

several subcortical regions and the medial temporal lobe exhibited

higher participation coefficient values. For all nodal metrics, the

TRT reliability results (Figure 7 and Figure S5) were largely con-

sistent with those with GSR. However, there were still slight dif-

ferences compared to those with GSR: The posterior visual cortex

and postcentral gyrus became more conspicuous hubs in the brain

networks without GSR for both degree and efficiency measures,

whereas the insula, dlPFC, and anterior DMN regions became

inconspicuous.

To further explore the effect of global signal on our results, we

charted the power spectrum of individual global signals under

each scan and found a higher amplitude value in the low-

frequency range in Scan 2 than in either Scan 1 or Scan 3 (Fig-

ure 8A). A repeated-measures one-way ANOVA revealed signifi-

cant differences in ALFF of the global signals among

scans [Greenhouse–Geisser corrected F(1.580,82.148) = 21.2,

P < 0.00001]. Further post hoc paired t-tests indicated nonsignifi-

cant differences in ALFF between Scan 1 and Scan 3 (P = 0.32),

but a significant difference either between Scan 1 and Scan 2 or

between Scan 2 and Scan 3 (P < 0.0001).

Influence of Head Motion on TRT Reliability

A repeated-measures ANOVA with post hoc analysis was per-

formed on the mean FD [47] across three scans to reveal the dif-

ferences in head motion between different scans. Significant

Figure 3 TRT reliability of global network

metrics. Higher long-term I reliability than

short-term and long-term II reliability was

found for all six global metrics. ICC values less

than 0.25 are displayed with the same dark

blue color indicating poor reliability. Cp,

clustering coefficient; c, gamma; r, sigma; Lp,

characteristic path length; k, lambda; Q,

modularity.

Figure 4 Voxelwise hub maps and their interscan correlations. (A) The interscan consistency of spatial patterns of functional hubs was the highest at

4.0% density for the four nodal metrics examined. (B) Group-level voxelwise maps of functional hubs and the overlap of hub regions identified by different

metrics at 4.0% density. For each metric, regions with z-scores above 1 were defined as hubs indicated by the color of dark red. In the last row, colors

indicate the number of different types of functional hubs overlapping in an area. The global hubs identified by degree, efficiency, and betweenness

showed similar spatial patterns, while the PC detected different connector hub regions at this density. All surface-based figures are drawn with BrainNet

Viewer [70]. PC, participation coefficient.
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differences were observed across three scans (Greenhouse–Geisser

corrected F(1.674, 87.074) = 5.12, P = 0.012). Further post hoc

analysis revealed that the head motion in Scan 2 was significantly

larger than in Scan 1 (T(52) = 2.93, P = 0.005) and marginally lar-

ger than in Scan 3 (T(52) = 1.72, P = 0.09), indicating that the sub-

jects moved more in Scan 2 than in other two scans. The potential

influence of head motion on TRT reliability was investigated with

the operation of data scrubbing. After the operation of head

motion scrubbing, the data from five subjects (two subjects,

N0005 and N0060, in Scan 1; three subjects, N0003, N0017, and

N0050, in Scan 2; none in Scan 3) were excluded from further

analysis because more than 10% of the original data were

removed in at least one scan. Then, we re-analyzed the TRT

reliability of the global and nodal metrics in the functional brain

networks that were constructed from the scrubbed data. All the

results involving the global (Figure 6B) and nodal (Figure S6)

TRT analysis showed comparable results to the main findings

(Figures 3–5), while the ICC of some network metrics was higher

under a few network densities after the performing the scrub-

bing procedure (e.g., Cp in 0.4% for short-term, Lp in 10% for

(A)

(B)

Figure 5 TRT reliability of nodal metrics. (A) Mean ICC values and their standard deviations across the brain for four nodal metrics (i.e., degree, efficiency,

betweenness, and PC). (B) Voxelwise maps of ICC values for different nodal metrics at four densities (i.e., 0.1%, 0.7%, 4.0%, and 10.0%). In (B), ICC values are

displayed within the right brain. Only voxels with ICC values above 0.25 are displayed, with a blue color indicating low reliability (ICC 0.25–0.4) and red to

yellow for larger ICC values (above 0.4). Degree and efficiency were observed to be more reliable in the long-term I, while betweenness and PC showed

overall low ICC values in all three terms. PC, participation coefficient; ICC, intraclass correlation coefficient.
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long-term I, and Lp and k in 0.4%, 0.7%, and 1% for long-term

II. Figures 3 and 6).

Discussion

Using R-fMRI data from 57 young healthy participants, we sys-

tematically investigated the TRT reliability of graph metrics in the

voxelwise human brain functional networks. The main results are

threefold: First, small-world and modular properties were consis-

tently observed in the voxel-based functional brain networks even

when different methodologies were used, and the functional hub

regions were mainly located in several DMN, salience, and ECN

networks. These results are largely compatible with previous

voxel-based brain network studies [16,22,33]. Second, both global

and nodal metrics were generally more reliable in the long-term I

than short-term, with the highest reliability in global metrics in

Cp, in nodal metrics, and in nodal degree and efficiency. Thirdly,

validation analyses without GSR and with head motion scrubbing

did not affect our main findings.

TRT Reliability of Global Network Metrics

For six global metrics (Cp, Lp, c, k, r, and Q), we observed that

the TRT reliability was higher for the long-term I than the short-

term, consistent with our previous findings based on ROI-based

network analyses using another independent TRT R-fMRI dataset

[17,32]. However, the present study showed moderate to good

long-term I reliabilities for most global metrics (e.g., Cp, Lp, c, k,

and r), which were much higher than the results in previous

studies showing poor TRT reliability for most global network met-

rics [17,32]. This discrepancy may be explained by two factors.

First, the definition of long-term I reliability used here was differ-

ent from that in the two previous studies. The present study

assessed long-term TRT reliability by comparing Scan 1 and Scan

3, whereas Wang et al. [17] and Liang et al. (2011) assessed reli-

ability by averaging the functional connectivity matrices of two

short-term scans and then comparing them with a long-term scan.

Given that Scan 2 exhibited a significantly different pattern than

the other scans (Table S2), averaging the two short-term scans

may reduce the TRT reliability [17,32]. This hypothesis can be fur-

ther supported by our findings demonstrating the overall low TRT

reliability in short-term (Scan 1 and Scan 2) and long-term II

(Scan 2 and Scan 3). Secondly, the present study examined the

finer-grained parcellation at a voxelwise level, which may

enhance the TRT reliability. In ROI-based network analyses, the

spatial inhomogeneity within ROIs could lead to poor specificities

of BOLD signals, thereby reducing TRT reliability. Notably, unlike

our findings here, a previous voxelwise fMRI study [36] reported

good to excellent short-term TRT reliability for several global net-

work metrics (e.g., Cp and Lp) in healthy elder adults. However,

their data are collected during an executive task, not resting-state,

which may lead to the higher TRT reliability of network metrics.

In addition, the topological organization of functional networks

may undergo remarkable changes during aging [50], and the dif-

ferent age range considered in Telesford et al. [36] may also have

potential influence on the TRT reliability.

(A)

(B)

Figure 6 TRT reliability of the global network metrics derived without GSR (A) and with head motion scrubbing after GSR (B). All global metrics exhibited

higher ICC values in the long-term I than the short-term and the long-term II. GSR, global signal removal; ICC, intraclass correlation coefficient.
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TRT Reliability of Nodal Metrics

Recently, researchers have paid more attention to the exploration

of hub regions characterized by different nodal centrality measures

[6,34,51]. Using nodal degree, efficiency, and betweenness mea-

sures, we identified global hubs in the voxel-based brain networks,

which were mostly located at the regions belonging to the DMN

and ECN, consistent with previous R-fMRI studies [33,34,37,51–

53]. These global hubs have been considered to play an essential

role in the global information communications across regions [53].

Using a participation coefficient measure, we identified connector

hubs, but the spatial patterns were sensitive to the selection of net-

work density thresholds: The connectors were similar to those glo-

bal hubs at a low density threshold (0.1%), but were different at

increasing thresholds, primarily distributed in the thalamus, med-

ial temporal lobe, supplemental motor area, insula, superior tem-

poral gyrus, and superior parietal cortex. These connectors are

important for the information integration and exchanges across

different functional modules or systems. Such a pattern has been

observed in several previous R-fMRI studies [54,55].

(A) (B) (C)

Figure 7 Group-level voxelwise functional hub maps and TRT reliability of the nodal metrics based on R-fMRI data without GSR at the density of 4.0%.

(A) Spatial patterns of the four nodal metrics (i.e., degree, efficiency, betweenness, and PC) for Scan 1. (B) Spatial maps of long-term I reliability of the

nodal metrics in the case without GSR. (C) Normalized histograms of ICC values across the brain showed similar results for degree and PC in two

cases (i.e., with GSR and without GSR), while the distribution profile of ICC values shifted slightly to the right for efficiency and betweenness. Although

the spatial configuration of hub regions and reliability, compared with Figures 4 and 5, showed slight differences for all nodal metrics in (A) and (B),

degree and efficiency were also more reliable than betweenness and PC, and most hub regions showed moderate to good reliability for these two

metrics, which is compatible with previous results with GSR. GSR, global signal removal; ICC, intraclass correlation coefficient; PC, participation

coefficient.
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The studies on nodal centrality in voxel-based brain networks

have potential benefits for researches associated with develop-

ment, aging, and diseases (for review, see [6]), and longitudinal

studies on drug effects [56], suggesting the necessity of TRT reli-

ability analysis for these nodal metrics prior to basic and clinical

study [30,57]. In our study, we found that degree and nodal

efficiency exhibited moderate to good long-term I reliability in

most hub regions (e.g., the major components of the DMN, sal-

ience, and ECN networks), which is in accordance with the pre-

vious studies [17,33]. However, betweenness and participation

coefficient showed overall low reliability regardless of the spatial

location and interscan intervals. Lower TRT reliability of these

two metrics could be attributed to their strong dependence on

the connection patterns. The estimation of betweenness largely

depends on the specific path in a network. Slightly changing

the connection pattern by adding or removing a few edges may

change the shortest path between nodes and thus have a large

effect on nodal betweenness. The calculation of the participation

coefficient is influenced by the modular architecture of a net-

work, which may undergo changes in short time [58] and can

be modulated by mental states during the scan [59]. Slight

modifications of the modular architectures between scans may

result in profound changes in participation coefficients. There-

fore, these two metrics may be more sensitive to noise than

degree and efficiency. The application of these two nodal met-

rics in longitudinal studies should be used with caution due to

their distinct TRT reliability.

Effects of InterScan Time Intervals

We found that the TRT reliabilities of global and nodal metrics

were both sensitive to time intervals between scans. All net-

work metrics showed poor to low short-term reliability across

the whole density range. Using another independent dataset at

NITRC (http://www.nitrc.org/projects/trt), Wang et al. [17] also

reported low reliability of ROI-based network metrics between

scans within the same session (45 min apart). This observation

may result from the alteration of Scan 2 which exhibited signifi-

cant differences from the other two scans in several network

metrics (e.g., Cp, and Q, as seen in Table S2). Scan 2 and Scan

1 were obtained in the same session separated by several other

MRI sequences with low requirements for subject compliance,

via a fixed scanning order, and all subjects kept awake during

the MRI scans according to a simple questionnaire after the

MRI scans. Therefore, the network difference may be largely

attributed to the scanning-order effects due to continuous scan-

ning, such as the alteration of subjects’ mental states (e.g.,

increased drowsiness and reduced patience). The potential

changes in brain states between different scans can be further

supported by the significantly different global signals observed

in Scan 2 and the other two scans (Figure 8). In contrast, Teles-

ford et al. [36] reported a very high short-term reliability for

several graph metrics in voxelwise networks. One important

cause is that these networks were constructed under the execu-

tive task condition, which might highly constrain the topologi-

cal pattern of the functional brain networks. Our finding here

suggests that the scanning scheme may affect the intrinsic func-

tional network topology, which should be considered in the

experimental design for future R-fMRI studies.

Effects of Global Signal and Head Motion

Effects of Global Signal

The effect and necessity of GSR in the research of intrinsic func-

tional networks are currently hot issues [29,31,46,60]. Similar to

a previous study of voxelwise functional hubs [33], we found that

the spatial configuration of functional hubs exhibited a slight

alteration without GSR. This finding may result from the shift of

the correlation distributions across the brain without global signal

removal [31,45]. Nevertheless, in contrast to the results of Liao

et al. [33] and Guo et al. [30], we found the overall level of TRT

reliability was not improved for either global or nodal metrics

without GSR. This discrepancy may be due to the different thres-

holding strategies used for network construction. In the work by

Liao et al. [33], a fixed correlation threshold was employed to

construct networks, which largely raises network densities with-

out GSR in comparison with those with GSR. Higher densities

may reduce the sensitivity of network organization to noise and

thus improve the TRT reliability. In the current study, we instead

(A) (B)

Figure 8 The power spectrum and amplitude of the low-frequency fluctuation (ALFF) of global signals. (A) The power spectrums of global signals of the

three scans are represented as mean value (solid lines) with standard deviation (dotted lines) across subjects. The Scan 2 showed higher amplitude value

in the low-frequency range than Scan 1 and Scan 3. (B) The changing curve of the ALFF for each subject was illustrated, and the circle represents each

scan of each subject. Subsequent statistical analysis revealed significantly higher ALFF of global signals in Scan 2 than the other two scans (P < 0.0001).

ALFF, amplitude of low-frequency fluctuation.
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utilized a fixed density threshold to keep the network connected-

ness at the same level with/without GSR, explaining why no

significant enhancement in TRT reliability was observed in case of

without GSR.

Moreover, we found that the TRT reliability of global metrics,

without GSR, seemed to be more sensitive to time intervals

between scans. Specifically, lower short-term reliability and long-

term II reliability were observed in case of without GSR (Fig-

ure 6), comparing with those obtained with GSR (Figure 3). This

phenomenon may be explained by the alteration of the global sig-

nal in Scan 2, indicated by the altered spectrum and ALFF of glo-

bal signals (Figure 8). Thus, the regression of global signals

reduced this scanning-order effect on network topologies and

enhanced the short-term and long-term II reliability. This change

in global signal may result from the possible changes in subjects’

mental states during the continuous scanning. Previous studies

have shown that global signals were tightly linked to neural activ-

ity [61] and exhibited a higher variability in schizophrenia [62].

Our results could provide circumstantial evidence supporting the

links between global signals and neural activity [61,62]. Together,

GSR could be related to the brain states of subjects, and their

effects could be varied due to the different data acquisition and

processing strategies employed in experiments and should be cau-

tiously considered.

Additionally, in Figure 8, we found a subject (ID: N0017) with

extremely high ALFF (three standards above the average value

across subjects) of global signals in Scan 2. We cautiously validated

the main results by removing this subject as an outlier, and we

found that the TRT reliability still remained a poor to low level for

all global metrics between Scan 2 and the other two scans (Fig-

ure S7).

Effects of Head Motion

The statistical analyses on the mean FD indicated that subjects

exhibited large head motion in Scan 2, which may be an evidence

of the increased drowsiness and reduced patience during the con-

tinuous scanning that we mentioned before. Therefore, the larger

head motion along with the worse mental state (e.g., tension,

anxiety, and fatigue) in Scan 2 than in Scan 1 and Scan 3 may be

the potential factors to cause the relatively low short-term and

long-term II reliability. Further researches would be valuable to

study the effects of head motion on network metrics, investigate

the relationship between head motion and mental state, and pro-

pose innovative methods to better reduce the effects of head

motion.

Methodological Considerations

Several issues need to be further addressed. First of all, we used a

traditional sampling rate (TR = 2s) for data acquisition in our

study. The results may be confounded by the aliasing of high-fre-

quency respiratory (~ 0.3 Hz) and cardiac (~ 1 Hz) noises, despite

being processed with a band-pass filtering (0.01~0.1 Hz) [63,64].

Recently, the development of imaging techniques, including mul-

tiband echo-planar imaging [65,66] and MR-encephalography

[67], has enabled whole-brain image acquisition at a higher tem-

poral resolution (<1 s), which can diminish the effects of respira-

tory and cardiac noises [64]. Therefore, further studies of

functional network topologies based on multiband data can be

considered to enhance the TRT reliability in future work. Second,

our results showed that the functional connectivity patterns have

been largely changed in Scan 2 after several MRI sequences,

which may be due to the alteration of individual mental states. In

other words, the decrease in TRT reliability for the network met-

rics may be a reflection of underlying physiological changes. Thus,

an investigation of the physiological basis of network metrics is an

important topic for future work. In addition, aside from the func-

tional networks studied here, the TRT reliability of structural net-

works at a high resolution is another essential issue for future

neuroimaging studies and should be systematically studied. Fur-

thermore, the coupling between high-resolution functional and

structural networks and its reliability are interesting topics for the

future. Finally, we investigated the R-fMRI data of young healthy

subjects without considering the aging issue. As indicated in previ-

ous studies [8,68,69], the network metrics undergo changes dur-

ing the development and aging process. This aging effect may

influence the TRT reliability of the network metrics for subjects in

different age ranges, which may be partly responsible for some of

the different results between the present study and in Telesford

et al. [36]. Exploring the TRT reliability of functional networks at

different age stages could be informative for the subsequent basic

and clinical applications.
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